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a b s t r a c t

Preeclampsia (PE) is an enigmatic syndrome, still with unknown
aetiology and multi-factorial pathogenesis. Our understanding of
the role of the immune system in PE development has undergone a
transformation over the years. From a model based on the alter-
ations in cell-mediated immunity, research moved on to a vision
centred on the alteration of the humoural immunity and on the
systemic involvement of the inflammatory system. The first hy-
pothesis was classically derived from the evidence that an
adequate maternal immunological response is necessary in preg-
nancy to allow the survival of the foetus. An abnormal response of
the maternal immune system against the placenta may be the first
pathogenetic step of PE, followed by a systemic inflammatory re-
action. Currently available treatments for PE are mainly preven-
tative with aspirin. Treatment aims to modulate inflammation and
the immune system before their changes become established.

© 2019 Elsevier Ltd. All rights reserved.
Introduction

The aetiology of preeclampsia (PE) is still unknown, and various mechanisms have been proposed
based on the alteration of one or more systems, such as cardiovascular, coagulative, genetic and
immunological, but none of these mechanisms individually can explain the entire phenomenon. The
glia).
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hypothesis that the immune system is involved in the development of PE originates from the evidence
that amaternal immunological response in pregnancy is necessary to allow the survival of the foetus as
a semi-allogeneic implant. An abnormal response of the maternal immune system against the placenta
may represent the first pathogenic step of PE, followed by a systemic inflammatory response involving
the endothelium [1e3] (Fig. 1). Supporting evidence comes from a greater incidence of PE in women
with autoimmune diseases and in foetaleplacental pathology, although the mechanism is probably
more complex.

The maternal immune system, when altered by underlying autoimmune pathologies, may interfere
with the immunological adaptations for optimal placentation, increasing the risk of PE and intrauterine
growth restriction [4,5]. A higher incidence of PE has been reported in women who conceive through
oocyte donation, where the foetus is genetically wholly allogeneic; the risk of PE is more than double
when compared with other methods of assisted reproductive technologies and more than four-fold
increase when compared with spontaneous conception [6,7].

The risk of PE is increased also in pregnancies where there has been reduced exposure to paternal
antigens such as nulliparous women, and womenwho have different partners in different pregnancies
have long inter-pregnancy intervals, use barrier contraception and conceive through intracytoplasmic
sperm injection. Change in paternity can increase the risk of PE if the prior pregnancy was normo-
tensive and, on the contrary, can decrease the risk if a prior pregnancy was complicated by PE [8]. A
prior pregnancy with the same partner may protect against PE even if terminating in spontaneous or
induced abortion whereas a previous miscarriage with a different partner does not [9].

Altered immunomodulation: the first pathogenic insult of PE

The first pathogenic insult of PE is an abnormal immune response to the allogeneic foetus and
presents similar immunologic features to graft versus host disease [1,2] (Fig. 2). The maternal prepa-
ratory immunological response to pregnancy is typically characterised by a T-helper type-2 lympho-
cyte response (Th2) (suppressor T-helper), which increases in proportionwith respect toT-helper type-
1 lymphocytes (Th1) (pro-inflammatory T-helper). This shift facilitates maternal tolerance by lowering
the activity of cytotoxic cytokines usually secreted by Th1 cells [10,11]. The normal shift toTh2 is altered
in PE and is characterised by a higher ratio of circulating Th1/Th2 lymphocytes [10] and a total number
of Th1 cells similar to those of non-pregnant women [12] with a cytokine profile towards the pro-
inflammatory cytokines such as IFN Ɣ and IL-4 [13].

Uterine natural killer (uNK) cells are thought to promote the induction of Treg cells and suppress
Th17 cells to favour materno-foetal tolerance [1,2,14e16]. Tregs are decreased both in the circulation
and decidua of women with PE, and their level is associated with the severity of the disease [17].
Additionally, Th17 cells are higher than in non-PE pregnancy, resulting in an imbalance between Treg/
Th17 with a pro-inflammatory phenotype and increased secretion of inflammatory cytokines [15].
Natural killer (NK) cells are classified based on the expression of surface markers CD56 and CD16. The
concentration of CD56 bright cells is decreased in serum frommothers with PE, and this difference can
Fig. 1. The pathogenesis of PE originates from the presence of several predisposing factors, such as immune maladaptation,
enhanced inflammation and others. These factors induce alterations of the placentation leading to reduced utero-placental perfu-
sion, and placental ischemia and hypoxia. Placental damage leads to the alteration of cytokines and angiogenic factors that enter the
maternal circulation and activate the endothelium. The endothelial systemic damage gives rise to PE clinical symptoms and can lead
to multi-organ failure.
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Fig. 2. The main executors of the immune system during pregnancy are NK cells and macrophages. Alterations in the function of
these regulatory cells produce an imbalance in the production of angiogenic and anti-angiogenic factors, proinflammatory cytokines
and anti-inflammatory cytokines. The resulting altered milieu induces defects in trophoblast invasion and placental damage that
triggers a systemic inflammatory response with diffuse activation of the endothelium.
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be found several months before the clinical diagnosis of the disease [18,19]. uNK cells are in close
contact with extravillous trophoblast (EVT) at the foetalematernal interface and regulate its invasion
through the secretion of angiogenic factors such as vascular endothelial growth factor (VEGF) and
placental growth factor (PLGF). In PE, the interaction between maternal and paternal genes is believed
to induce abnormal placental implantation through increased NK cell activity. Patients with PE show a
suboptimal interaction between uNK and the trophoblast, leading to an altered maternal spiral artery
modification [20,21]. The action of uNK cells is regulated by the interaction of receptors that can be
activators or inhibitors. Among these, the killer immunoglobulin-like receptor (KIR) has an important
function inhibiting the production of cytotoxic cytokines and stimulating the production of angiogenic
factors by uNK. The association between the polymorphisms KIReAA in the KIR receptors on maternal
NK cells and foetal HLA-C2 haplotype has been reported in pregnancies at increased risk of PE. This
combination results in a strong inhibitor signal for the uNK function that would no longer be able to
contribute to uterine vascular remodelling [22].

Macrophages are the second most abundant cells at the foetalematernal interface. Macrophages
surround the spiral arteries and promote remodelling by the secretion of pro-angiogenic cytokines
such as VEGF and metalloproteinase and remove apoptotic cells [23]. It has been suggested that
macrophage functional maturation is impaired in patients with PE, and a pro-inflammatory imbalance
with a predominance of the phenotype M1 would be present. GM-CSF drives macrophage differenti-
ation and the levels in decidual cells and plasma are higher in patients with PE than those with
gestational-age matched controls [24].

The complement system is an essential component of innate humoural immunity. It is implicated in
the clearance of pathogens, apoptotic cells, and immune complexes by forming a polymeric lytic pore
that inserts into cells membranes, known as the membrane attack complex (MAC) [25]. Syncytio-
trophoblast is able to regulate the complement system through the expression of regulatory proteins
which interfere with MAC formation, avoiding cell lysis and preventing excessive complement acti-
vation [25]. Complement activation has been shown to stimulate monocytes to release anti-angiogenic
factors [26]. A large body of evidence supports the hypothesis that complement dysregulation may be
crucial in the pathogenesis of PE [27]. The association between PE, in particular early severe disease,
and autoimmune diseases, especially systemic lupus erythematosus (SLE) and the anti-phospholipid
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antibody syndrome (APS), supports this hypothesis [28,29]. Placental biopsies from pregnancies
complicated by SLE and APS indeed show activation of classical complement activation [30,31].
Markers of alternative complement pathway activation have been found in maternal serum and urine
in women with severe PE [32,33]. Even in the absence of pre-existing autoimmune disease, mutations
in complement regulatory proteins have been associated with increased risk of PE [11,34].

The embryo also activates protective mechanisms against the mother's immune system. The EVT
that migrates into the maternal decidua is poorly immunogenic and expresses an unusual combination
of human leukocyte antigen (HLA) class I antigens. EVT hardly expresses the molecules of the main
histocompatibility complex or the HLA-A or HLA-B that are primary stimulators of classical graft
rejection and instead displays a unique pattern of non-classical HLA class IB antigens, the most
prominent of which is HLA-G [1,2]. HLA-G is a smaller protein which has few alleles and shows no
evidence of genetic imprinting [35,36]. HLA-G possesses immune-modulatory and tolerogenic func-
tions, which protects the trophoblast during implantation. HLA-G and HLA-E mitigate the maternal
immune reaction through a complex interactionwith uNK, macrophages and CD8þ cells, which lowers
the killer effect of uNK cells and promote placentation [37,38]. In pre-eclamptic placentae, HLA-G
expression was found to be absent or reduced [39]. Following placentation, during 8 and 18 weeks
of pregnancy, the maternofoetal interface is characterised by the invasive cytotrophoblast, which ex-
presses HLA-C that can signal paternal specificity [40]. This interface regresses in the second stage of
pregnancy, before the clinical symptoms of PE arise [40].

Cytokines and systemic inflammatory response

The appropriate balance of cytokine and chemokine expression at the maternalefoetal interface
influences the immune cell profile and function within the decidua. In PE, the regulation of immune
responses is a result of aberrant activation of innate immune cells, leukocyte activation and imbalanced
differentiation of T-helper cell subsets, which may account for elevated cytokine levels and the cyto-
toxic environment in utero [41]. In PE, the circulating levels of TNF-a and IL-6 increase, whereas the
levels of IL-10 and IL-4 decrease [42]. The resulting imbalance leads to systemic inflammation and
contributes to endothelial activation, which plays a role in the onset of the disease. TNF-a decreases the
mRNA of nitric oxide synthase, reduces acetylcholine-induced vasodilatation and increases the pro-
duction of the potent vasoconstrictor endothelin-1 (ET-1) from endothelial cells [43]. The levels of TNF-
a, IL6 and ET-1 are increased by 2e3 fold in the circulation of women with PE compared with
normotensive women or women affected by gestational hypertension and levels increase further with
the progression of the disease [44,45]. Excessive TNF-a and IL-6 induce trophoblast apoptosis and
increase endothelial activation [46]. Infusion of TNF-a or IL-6 in pregnant rats causes hypertension and
reduced endothelium-dependent vascular relaxation [47]. IL-10 is an important anti-inflammatory
cytokine involved in the regulation of the inflammatory response. Reduced levels of IL-10 have been
found in the circulation and in the placenta of mothers affected by PE. IL-10 is secreted by Treg cells
whose number is also decreased in PE [42,48]. Both Tregs and IL-10 are implicated in reducing the
levels of Th1 cells, which produces TNF-a and IL-6.

The immune system also plays a role in the secretion of angiogenic factors. During normal preg-
nancy, uNK cells produce transforming growth factor beta (TGF b), which participates in immuno-
regulation and angiogenesis, together with angiogenic factors such as VEGF and PLGF; the increase in
VEGF produced after the activation of uNK reacts on fms-like tyrosine kinase 1 (Flt1) receptors causing
efficient EVT invasion. In PE, the total circulating level of VEGF is elevated, but the level of the soluble
isoform of its receptor (sFLT1) increasesmore than the ligand [49]. The result is a reduction in free VEGF
available for angiogenesis. VEGF is also important for endothelial stability so systemic inhibition can
cause a generalised endothelial dysfunction [50,51]. PLGF is a pro-angiogenic factor of the VEGF family
and binds with lower affinity to the same receptor FLT1. PLGF is overexpressed in pregnancy but is
reduced in PE, and the reduction can precede the clinical onset of the disease, with an imbalance in the
sFlt1/PLGF ratio. This altered balance due to the marked increase of sFlt1 neutralises the angiogenic
activities of both VEGF and PLGF and may be responsible for defective EVT invasion in PE [52,53].
Plasma PLGF negatively correlates with total peripheral resistance and the uterine artery pulsatility
index in PE [54]. Soluble endoglin (sEng) is an anti-angiogenic factor that inhibits TGF-b binding to its
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receptors and downstream signalling including effects on activation of endothelial nitric oxide syn-
thase and vasodilation [55,56]. SEng leads to dysregulated TGF-b signalling in the vasculature and may
act in concert with sFlt1 to induce severe PE.

NK cells also produce IFNƔ that is specifically required for uterine artery remodelling [21]. In the
second trimester, however, excessive production of pro-inflammatory cytokines such as IFN-Ɣ and
TNF-a, which are characteristic of PE inhibit trophoblastic migration, can be directly cytotoxic [57,58].
Of clinical interest, some of the agents described, especially PLGS and sFLT1, can be measured in the
plasma of pregnant women during the long preclinical phase of PE, and can be used as biomarkers
alone or in combination allowing the identification of women at risk or early diagnosis of the disease.

Assessment of the immune system in early pregnancy can be useful in predicting the risk of PE. The
alternate complement pathwaymay be up-regulated and plasma levels of factor B-derived Bb fragment
are higher in pregnancies with PE than in normotensive pregnancies [50]. Measurement of plasma
levels of biomarkers such as VEGF, sFlt-1 and sEng might allow first trimester screening in asymp-
tomatic pregnant women and may prevent PE onset. Later, in gestation, the same biomarkers can be
useful for stratification of hypertensive patients in different categories according to the type of disease
[59]. SEng and SFLt1/PLGF start to increase 2e3 months before the clinical onset of PE symptoms.

The possible predictive markers of PE are clinically relevant [60]. Markers associated with angio-
genesis, both PlGF and sFlt-1, are consistently associated with the risk of PE. Serum levels of PlGF before
30 weeks have been shown to have an OR of 9.0 (95% confidence interval (CI) 5.6e14.5) in one large
metanalysis [53] and OR 3.41 for early onset PE in a second study (95% CI 1.61e7.24) [59]. The sensi-
tivity was 32% for a false positive rate of 5% [53]. For sFlt-1, the OR ranges from 1.3 (95% CI 1.02e1.65) to
6.6 (3.1e13.7) with a stronger association when tested later in pregnancy and a sensitivity of 26% for a
false positive rate of 5% [53,61]. SEng and VEGF were not as consistently found to be associated with PE.
The low sensitivity of each single marker led researchers to find a predictive model which could be
more useful in clinical practice. Multiple investigators have used different combinations of variables in
logistic regression analyses to create a tool to predict the individual risk of PE in early pregnancy [62].
Using a combination of more than twomarkers, the detection rate improves to between 38% and 100%.
[60], whereas using a predicting model with a combination of risk factors, biophysical parameters,
ultrasound measurement and biochemical markers, the sensitivity increased to 82% versus 41% using
risk factors alone [62]. The best results (detection rate 100%, 95% CI 69e100%) were achieved with the
combination of three biochemical markers (Inhibin A, PlGF and PAPP-A), uterine artery Doppler and
maternal baseline clinical characteristics [60,63]. Despite the encouraging results, clinical data avail-
able are still too small and conflicting to be applied widely in clinical practice. Current recommen-
dations do not support the routine use of these tools and recommend that the screening of women at
risk of developing PE should be based on the assessment of clinical history and maternal parameters
[64,65].

New treatments for PE

The most studied and used drugs to prevent PE are low dose aspirin (LDA) and low molecular
weight heparin (LMWH). The use of LDA in PE prevention stems from its ability to reduce platelet
thromboxane synthesis through the acetylation of platelet cyclooxygenase (COX) while maintaining
vascular wall prostacyclin synthesis [66,67]. The function of LDA is probably also expressed also
through the anti-inflammatory role of aspirin. Aspirin is able to trigger lipoxin, which is a bioactive
metabolite of arachidonic acid able to promote the resolution of inflammation. Aspirin has anti-
oxidant, anti-inflammatory and immuno-modulator functions [68,69]. Four large randomised trials
have been published showing a reduction in the incidence of PE in high-risk patients treated with LDA
prophylaxis [70e73]. The most recent of these are randomly assigned 1776 women to receive aspirin,
or placebo from 11 to 14 weeks of gestation until 36 weeks of gestation. LDA reduced the incidence of
PE in the treated group (OR 0.38; 95% confidence interval, 0.20 to 0.74; P¼ 0.004). LDA is more effective
when started in the first or early-second trimester, and the benefit is higher for women at a higher risk
of PE [74,75].

The mechanism of action of LMWH in preventing PE is based on its capacity to improve endothelial
function more than the anti-coagulant effect. The evidence that most of the obstetrical complications
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are different endpoints of the same underlying mechanism including inflammation, altered immu-
nomodulation and shallow placentation suggests that there may be benefit from LMWH prophylaxis
[76]. LMWH plays a role in inflammation modulating circulating levels of angiogenic factors such as
PLGF and sFLT1 and inflammatory cytokines such as Il-8, Il-6 and TNF-a [77e81]. LMWH is able to
inhibit leukocyte adhesion to damaged tissue and reduce complement activation [82,83]. It has been
demonstrated that LMWH improves endothelium-dependent relaxation in pregnant women at risk of
PE and increases circulating levels of PLGF [81]. The possible role of LMWH in preventing PE remains to
be clarified. In 2016, an exhaustive meta-analysis of individual patient data from randomised
controlled trials published before 2013 was conducted, which included 963women from 8 studies. The
result of this meta-analysis concluded that LMWH did not reduce the risk of recurrent placenta-
mediated pregnancy complications (LMWH 14% versus LMWH 22% absolute difference �8%, 95% CI
-17 $ 3 to 1 $ 4, p ¼ 0 $ 09, relative risk 0 $ 64, 95% CI 0 $ 36-1 $ 11, p ¼ 0 $ 11). The authors noted
significant heterogeneity between single-centre and multi-centre trials with single centre-based
studies that reported positive results which were unconfirmed in the multi-centre studies [84].
Since the publication of these meta-analyses, two additional multi-centre, randomised trials have been
published in which the authors concluded that LMWH prophylaxis is ineffective in preventing PE in
high-risk women [85,86]. Although the evidence produced so far has not demonstrated the benefits of
LMWH, concerns remain regarding the heterogeneity between single-centre and multi-centre studies,
as noted by Rodger and co-authors; inclusion in trials of different phenotypes of PE; inclusion of
different pathologies grouped under the umbrella of placental dysfunction; differences in the timing of
initiation of therapy; the dosage and in the outcomes evaluated, which make it difficult to draw un-
ambiguous conclusions.

Corticosteroids are the most widely used drugs for reducing inflammation. Steroid action is explicit
both on innate immune cells and adaptive cells. The use of corticosteroid treatment has been evaluated
in women with severe PE, especially in those affected by haemolysis, elevated liver enzyme and low
platelet (HELLP) syndrome. The results of a Cochrane Database meta-analysis published in 2010 show
that antenatal treatment with corticosteroids compared with a control group neither improve
maternal outcomes nor infant outcomes [87]. The use of corticosteroid in the postpartum period
showed improved liver function, with a faster recover of transaminase, a more rapid recover of kidney
function, with a significant increase in urinary output, and a positive effect on platelet count which
stabilised or increased in number, allowing more patients to receive regional anaesthesia [88e91].

Biologic agents may have a role in the treatment of immune dysfunction related to PE. The rationale
for treatment is based on the hypothesis that PE is a systemic inflammatory disorder and the com-
plement cascade is a key mediator. The evidence shows that biologic agents can be effective in the
blockade of the complement system or TNFa on spiral artery remodelling that influences pregnancy
outcome [11,92]. In 2013, a case report was published of pregnancy complicated by HELLP syndrome,
successfully treated with eculizumab: clinical improvement was observed and blood tests completely
recovered within 16 days [93]. Evidence is still limited and biological agents should be used with
caution in pregnancy.

Intravenous immunoglobulin (IVIg) has immunomodulatory and anti-inflammatory effects. The
mechanism of action is through different pathways in the innate and adaptive immune system. IVIg
interacts with complement proteins and modulates the synthesis of cytokines and chemokines [94].
Data on the usefulness of IVIg in obstetric complications are still conflicting and are derived from
studies on obstetric anti-phospholipid syndrome and recurrent miscarriages. A review published in
2016 on additional treatments for obstetric anti-phospholipid syndrome found 12 studies published
and concluded that IVIg had a beneficial effect on pregnancy when used in addition to the standard
protocol with LDA and LMWH but not when used as a single agent [95]. IVIg seems to be able to
enhance placental function and has a positive effect on foetal growth, although the clinical usefulness
is still unclear [96,97].

Conclusions

Our understanding of the immune system's involvement in pregnancies complicated by PE has
undergone a transformation over the years. From a model based on the alterations of cell-mediated
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immunity, we have moved on to a concept of altered humoural immunity and systemic involvement of
the inflammatory system. The alterations of cytokines and angiogenic factors that trigger the onset of
PE have been used to build predictive and diagnostic models useful in clinical practice. Understanding
of the pathogenic mechanisms of PE made it possible to clarify the mechanism of action of drugs
already used in the prophylaxis of women at risk for developing PE and to develop new drugs for the
prevention and treatment of PE.

Future research should focus on clarifying the mechanisms that trigger PE, and differentiating
between the alterations that give rise to different phenotypes of PE: placental PE associated with
growth restriction, maternal PE associated with a chronic maternal inflammatory alteration and dys-
metabolism associated with normal foetal growth.

The only definitive treatment of PE remains delivery of the foetus and removal of the placenta,
which produces harmful cytokines. However, premature delivery in early onset PE is often associated
with morbidity and even disability in the infant. The development of drugs capable of arresting
immunological alterations and placental inflammation should be the goal of research in this area.
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Practice points

� Cytokines and angiogenic factors are involved in the pathogenesis of PE and their expression
is altered long before the onset of clinical symptoms.

� Chemokines and angiogenic factors have a role as biomarkers for PE and may be helpful in
the differential diagnosis of hypertensive disease.

� The therapeutic actions of current and future medical treatments should aim to interact on
inflammation and the immune system.

� ASA is the treatment of choice for PE prevention in high-risk patients.

Research agenda

� The accurate identification of women at risk of developing PE remains a core issue for
research.

� Future medical treatment can be studied on the basis of the known alteration of the immune
system.
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